Extensions 1→N→G→Q→1 with N=C22xS3 and Q=Dic5

Direct product G=NxQ with N=C22xS3 and Q=Dic5
dρLabelID
C22xS3xDic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=C22xS3 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C22xS3):Dic5 = C15:8(C23:C4)φ: Dic5/C5C4 ⊆ Out C22xS31204(C2^2xS3):Dic5480,72
(C22xS3):2Dic5 = C2xD6:Dic5φ: Dic5/C10C2 ⊆ Out C22xS3240(C2^2xS3):2Dic5480,614
(C22xS3):3Dic5 = S3xC23.D5φ: Dic5/C10C2 ⊆ Out C22xS3120(C2^2xS3):3Dic5480,630

Non-split extensions G=N.Q with N=C22xS3 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C22xS3).Dic5 = C20.5D12φ: Dic5/C5C4 ⊆ Out C22xS31204(C2^2xS3).Dic5480,35
(C22xS3).2Dic5 = C60.94D4φ: Dic5/C10C2 ⊆ Out C22xS3240(C2^2xS3).2Dic5480,32
(C22xS3).3Dic5 = S3xC4.Dic5φ: Dic5/C10C2 ⊆ Out C22xS31204(C2^2xS3).3Dic5480,363
(C22xS3).4Dic5 = C2xD6.Dic5φ: Dic5/C10C2 ⊆ Out C22xS3240(C2^2xS3).4Dic5480,370
(C22xS3).5Dic5 = C2xS3xC5:2C8φ: trivial image240(C2^2xS3).5Dic5480,361

׿
x
:
Z
F
o
wr
Q
<