Extensions 1→N→G→Q→1 with N=C22×S3 and Q=Dic5

Direct product G=N×Q with N=C22×S3 and Q=Dic5
dρLabelID
C22×S3×Dic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=C22×S3 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊Dic5 = C158(C23⋊C4)φ: Dic5/C5C4 ⊆ Out C22×S31204(C2^2xS3):Dic5480,72
(C22×S3)⋊2Dic5 = C2×D6⋊Dic5φ: Dic5/C10C2 ⊆ Out C22×S3240(C2^2xS3):2Dic5480,614
(C22×S3)⋊3Dic5 = S3×C23.D5φ: Dic5/C10C2 ⊆ Out C22×S3120(C2^2xS3):3Dic5480,630

Non-split extensions G=N.Q with N=C22×S3 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C22×S3).Dic5 = C20.5D12φ: Dic5/C5C4 ⊆ Out C22×S31204(C2^2xS3).Dic5480,35
(C22×S3).2Dic5 = C60.94D4φ: Dic5/C10C2 ⊆ Out C22×S3240(C2^2xS3).2Dic5480,32
(C22×S3).3Dic5 = S3×C4.Dic5φ: Dic5/C10C2 ⊆ Out C22×S31204(C2^2xS3).3Dic5480,363
(C22×S3).4Dic5 = C2×D6.Dic5φ: Dic5/C10C2 ⊆ Out C22×S3240(C2^2xS3).4Dic5480,370
(C22×S3).5Dic5 = C2×S3×C52C8φ: trivial image240(C2^2xS3).5Dic5480,361

׿
×
𝔽